

Renewable Energy Technology Status

Stanley R. Bull National Renewable Energy Laboratory

Presented to Army WEEC 2000 December 6, 2000

U.S. Energy Production by Source, 1998

Source: Annual Energy Review 1998, Table 1.2

Renewable Energy Pathways

Wind Energy
Solar Photovoltaics
Concentrating Solar Power
Solar Buildings
Biomass Electric
Biomass Transportation Fuels
Geothermal Energy
Hydropower
Solar Advanced Photoconversion

Source: Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions, Oct 1997

U.S. Renewable Energy Resources

Renewable Energy Technologies

- Zero CO₂ emissions (or net zero for biomass)
- Currently avoids 70 MtC/yr

Currently accounts for 10% of U.S. energy consumed (hydropower and biomass)

Wind Energy

04824

04690 00263

Worldwide Wind Energy Installations

Based on information supplied by International Energy Agency.

Wind Energy

- 2500 MW installed in U.S.,
 10,000 MW worldwide
- Current levelized electricity cost is 4-7¢/kWh; 2005 goal is 2-3¢/kWh
- Strong European competition
- R&D: improvements in turbine designs, structural dynamics, lower cost

Green Mountain Power Wind Plant, Vermont (05592)

NREL THE EVOLUTION OF COMMERCIAL **U.S. WIND TECHNOLOGY**

NREL THE EVOLUTION OF COMMERCIAL **U.S. WIND TECHNOLOGY**

NREL THE EVOLUTION OF COMMERCIAL **U.S. WIND TECHNOLOGY**

Photovoltaics

World PV Module Shipments (1988-1999)

(in Megawatts)

From PV News, Paul Maycock, editor; yearly February editions.

Solar Photovoltaics

- About 500 MW installed worldwide; most remote applications
- 150 MW sales in 1998; 15%-20% per year growth
- U.S. market share 40%
- Strong competition, government support from Japan and Germany
- R&D: fundamental science of materials, advanced solar cells and processes, scale-up, lower cost

Sacramento Municipal Utility District (01026)

Source: Technology Opportunities to Reduce U.S. Greenhouse

Gas Emissions, October 1997

Best Research-Cell Efficiencies

Best Research-Cell Efficiencies

Best Research-Cell Efficiencies

Concentrating Solar Power

Concentrating Solar Power

- Electricity: power tower, trough, dish/Sterling systems
- Current levelized electricity cost is 10– 12¢/kWh; 2010 goal is 4–6¢/kWh
- Strong competition
- R&D: improve efficiency, materials, lifetime; lower cost

SAIC Stirling Dish Collector

02320

Solar Buildings

- 4.5 million water heating systems installed; 54 transpired collectors installed worldwide
- Current levelized cost for solar water heating systems is 8¢/kWh; projected 2003 cost is 4¢/kWh; current cost for transpired solar collectors is 2¢/kWh
- Strong international competition
- R&D: improve efficiency, materials, lifetime; lower cost

Buildings of the Future

Source: BCHP Technology Roadmap, 4/30/00, USDOE, Distributed Energy Resources Task Force, p8.

Biomass Sources

Biomass Electric

- Direct combustion 7500 MWe installed capacity
- Cofiring (wastes) demonstrations
- Biomass gasification combined cycle (energy crops) – in development
- Regrowing biomass (energy crops) results in very low or zero net CO₂ emissions
- R&D: ash chemistry and deposition, advanced gas turbine technologies

Direct Combustion Co-firing Gasification Combined Cycle

Source: Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions, October 1997

Biomass Transportation Fuels

Ethanol costs:

Current: \$1.22/gal estimate

2010: \$0.67/gal estimate

 Near term - biomass wastes for oxygenates; longer term - energy crops for bulk fuel

- Biochemical and thermochemical processing
- Displacing gasoline with ethanol in light-duty vehicles gives 90% reduction in carbon emissions
- R&D: low-cost production of enzymes, development of microorganisms, improved performance of thermochemical processing, energy crop advances

Source: Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions, Oct 1997

Geothermal Energy

Geothermal Energy

- 6000 MW produced worldwide from reservoirs; 2700 MW from U.S. reservoirs
- Additional 4000 MW capacity for heatpumps in U.S.
- Currently 7-10¢/kWh
- R&D: methods for predicting reservoir performance; low-cost drilling; improved conversion efficiency

Condensers and cooling towers, The Geysers, being fitted with direct contact condensers developed at NREL

Source: Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions, Oct 1997

Stan Bull

Associate Director for Science and Technology

National Renewable Energy Laboratory

1617 Cole Boulevard

Golden, CO 80401

Phone: 303-275-3030

Fax: 303-275-3097

e-mail: stanley_bull@nrel.gov